Snoopy - A Tool to Design and Animate/Simulate Graph-based Formalisms

Monika Heiner, Ronny Richter, Martin Schwarick

Brandenburg University of Technology Cottbus
Computer Science Department

http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html

March 3, 2008
Basic Properties

extensible

- generic design facilitates the addition of new graph classes

adaptive

- simultaneous use of several graph types in a homogeneous environment
- GUI adopts dynamically to graph type in active window

platform independent

- implementation in C++ and wxWidgets framework
- supported for Windows, Linux, and Mac
Model Editor

Model Creation

- graph constraints are considered
- hierarchy by subgraphs
- logical (fusion) nodes
- interaction between graphs
Model Editor

Model Exploration

- forward and backward animation with different firing rules
- dedicated simulation using different algorithms
- various shapes and colours for net elements
- dynamic colouring of graph elements (e.g. paths or invariants)
- automated layout (graphviz)
Model Editor

File Handling

- generic XML file format
- digital signature for graphs by MD5-checksum
- conversion between contained graph classes
- export to external analysis tools
- import from convenient file formats
Reachability Graph

- simple graph class
- one node and one edge type
- furthermore comment nodes
- constructable from Petri net animation
Petri Net

- contains places and transitions as well as hierarchy and logical nodes
- animation of the token game
- interaction manager allows to construct the reachability graph
- export to a wide range of external analysis tools (INA, Lola, Maria, MC-Kit, Pep, Prod, Charlie...)
- import of a restricted APNN file format
Stochastic Petri Net

- stochastic Petri nets
- generalized stochastic Petri nets
- deterministic and stochastic Petri nets
- biochemically propensity functions (mass-action, level)
- multiple initial markings, parameter sets, and function sets
- Gillespie algorithm for simulation
- export to PRISM, TimeNet, and Dizzy is in preparation
Continuous Petri Net

- corresponds to a set of ordinary differential equations
- visualizes the structure
- for a quantitative description of biochemical reaction networks
- six stiff and six unstiff solvers are available
- multiple initial markings and parameter sets
- export to SBML
Further Petri Net Classes

Extended Petri Net

- with additional arcs (inhibitor, read, reset, equal)

Time Petri Net

- up to now time intervals or durations for transitions
- export to INA

Modulo Net

- Petri net with modulo arc for counting transitions firing
Fault Tree

- for risk management of dependable systems
- describes dependencies of component based systems
- qualitative and quantitative analysis
- several dependability measures may be computed

Diagram:
- Top node labeled with \(\geq 1 \)
- Nodes labeled with \(e_1, e_2, e_3, v \)
- Connectors labeled with \&
Other Graph Classes

MTBDD
- for documentation and small case studies

EDL Signature Nets
- describes patterns of computer network attacks
Case Studies

academic

dining philosophers
Case Studies

academic

solitaire game

Monika Heiner, Ronny Richter, Martin Schwarick

BTU Cottbus, Chair DSSZ
Case Studies

technical

transportation system with 2 pushers

PUSHER control program

RELAY R1

RELAY R2

concurrent pusher

Monika Heiner, Ronny Richter, Martin Schwarick

BTU Cottbus, Chair DSSZ

Snoopy
Case Studies

technical

case study of the full refined closed system

control program of a production cell
Case Studies

biological - metabolic networks

glycolysis
Case Studies

biological - metabolic networks

starch production in potato tuber
Case Studies

biological - signal transduction networks

haemostasis
Case Studies

biological - signal transduction networks

RKIP/MEK-ERK signalling pathway
Case Studies

biological - signal transduction networks

Levchenko model
Case Studies

biological - gene transcription networks

biosensor: award winning model in the 2007 iGEM competition (MIT)
Implementation

- based on the experience of the predecessor PED
- Snoopy was started 1997 as student project
- now 120,000 lines of code
- Acknowledgement: Matthias Dube, Markus Fieber, Anja Kurth, Sebastian Lehrack, Thomas Menzel, Christian Rohr, Daniel Scheibler, Krispin Schulz, Alexey Tovchigrechko, Katja Winder
- maintenance and improvements ensured in future by students’ graduate work and a PhD project in cooperation with MPI Magdeburg

Monika Heiner, Ronny Richter, Martin Schwarick
Snoopy
Availability

- free of charge for non-commercial use
- source code is available on request
- further informations:
 http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html
Future Works

- import from bio databases
- import and animation of counter examples or witnesses from external model checkers
- automatic conversion between stochastic and continuous Petri nets
- hybrid models
- PNML support
Thanks for your attention.

Questions?

See you for a tool demo.